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Abstract. The temperature distribution in a periodic array of parallel cracks acting as heat sinks is studied for
the case of stationary crack motion by use of the Wiener–Hopf method. The problem arises in the investigation of
cracks propagating into solid material, where the stresses driving crack motion are caused by heat transfer from
the solid through the crack surfaces. The solution is given in terms of Fourier integrals involving infinite products.
The heat-flux distribution in the vicinity of the crack tips is computed analytically from the high wavenumber
asymptotics. Numerical solutions of the temperature distribution are presented for several values of the Biot and
Péclet number, and the effect of varying these parameters is discussed qualitatively.
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1. Introduction

The fracturing of solid materials under external tension or shear is usually caused by dynamic
propagation of cracks. Provided the external forces have supplied sufficient elastic energy,
the cracks can traverse the entire body with velocities of the order of the speed of sound,
leading to sudden, uncontrolled failure of the material [1, 2]. Controlled crack propagation
can be achieved when the stresses driving crack motion are applied only in the vicinity of the
crack tip. If the zone of increased tensile or shear stresses is moved with constant velocity
v through the elastic body, then the resulting crack motion will attain the same velocity. In
the modeling of this phenomenon, no dynamic processes need to be taken into account. Only
the condition for static equilibrium of the crack has to be used. Yuse and Sano have realized
such a controlled crack motion by lowering a strip of heated glass into cold water [3]. The
cooling generates temperature gradients which give rise to thermal stresses in the vicinity of
the crack tip. Depending on the applied temperature difference and lowering velocityv they
observed various regimes of crack motion,i.e. straight and oscillatory motion of single or
multiple cracks. Subsequent theoretical investigations have reproduced the bifurcation from
straight to oscillatory motion as well as other aspects [4–7].

In a first approximation, the presence of cracks does not affect the heat transfer and the
temperature distribution in the glass strip experiment. However, there may also be cases where
the crack surfaces contribute significantly to the heat transfer. The temperature distribution
then depends on the position of the cracks. This mechanism is important in the chemical de-
composition of solids, which can be studied in the framework of linear thermoelasticity when
the temperature field is replaced by a concentration field. The model proposed by Yakobson
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[8] considers the decay of a compound into a gaseous and a solid component, which occupies
a smaller volume fraction. The gaseous component diffuses through the material towards the
surface, where it is removed from the solid. In [8], it is assumed that the decomposition gives
rise to a moving front between the solid and the fragments. The concentration profile of the
gaseous component in the solid is assumed one-dimensional. It allows for precursor cracks
which move with the same velocity as the front. In contrast to the experiment of Yuse and
Sano, the velocity of the crack front is not prescribed. Yakobson uses a stability argument as
selection criterion for the velocityv.

The assumption of a front between solid and fragments is unnecessary when the surfaces of
the precursor cracks are taken into account for removal of the gaseous component. If we ignore
the fragmentation process, the cracks grow indefinitely, and cannot be considered separately.
The simplest configuration one can consider in this case consists of a periodic array of evenly
spaced cracks propagating with constant velocity. This problem has been analyzed by the
authors using finite element computations for the case of internal cooling of the crack surfaces
[9]. Since the analysis is based on linear thermoelasticity, it is mathematically equivalent to
that of chemical decomposition when the latter is modelled as in [8].

Owing to its simple geometry, the Wiener–Hopf technique [10–12] is applicable for the
solution of this problem. The solution is obtained in two steps. The temperature distribution
must be computed first, since it occurs in the thermoelastic stress–strain relation. After that,
the mechanical quantities,i.e. displacements and stresses, can be determined. Both the thermal
and the mechanical problem can, in principle, be solved by the Wiener–Hopf method. The
solution of the second step is an extension of the work by Benthem and Koiter [13], which
treats a periodic array of cracks with constant tension on the crack surfaces. However, the
mechanical problem leads to complex algebra and apparently requires extensive numerical
computations.

In this paper, we derive the Wiener–Hopf solution for the temperature distribution in an
array of cracks propagating with constant velocity. The Wiener–Hopf solution assures us of the
existence of a solution with the desired asymptotics for the temperature distribution far away
from the crack tips. Mathematically, it furnishes an example of a homogeneous Wiener–Hopf
problem with a non-trivial solution.

The paper is organized as follows. We introduce the non-dimensional equations and pa-
rameters, and derive the Wiener–Hopf equation in Fourier space using Jones’s method [10,
pp. 52–58] in the following section. An infinite product representation of the solution is given
in the third section. After that, we derive approximations for the heat flux in the vicinity of
the crack tip and present numerically computed temperature distributions for several values
of the non-dimensional parameters. Finally, we summarize our findings and indicate possible
extensions of this work.

2. Formulation of the problem

We consider the temperature field in a periodic array of moving cracks filled with a coolant of
temperatureT1. The cracks propagate with constant velocityv into a material of temperature
T = T0. We assume that the cracks are evenly spaced and parallel,i.e. their arrangement is
similar to the teeth of a comb. The distance between the cracks is 2d. We assume that the
temperature is independent of the verticalz-direction. Because of symmetry we only need
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Figure 1. Schematic diagram of coordinate system and boundary conditions. The heat flux componentTy vanishes
on the symmetry lines.

to consider a single crack. We choose the coordinate axes so that the crack moves along the
x-axis. The symmetry domain extends fromy = 0 to y= d.

For non-dimensionalization of the problem we choosed as unit of length,κ/d as unit of
velocity, d2/κ as unit of time, andT0 − T1 as unit of temperature. The origin of the dimen-
sionless temperature scale corresponds toT1. The quantityκ denotes the thermal diffusivity
of the material. In the frame of reference moving with the cracks, the stationary heat equation
for the temperatureT reads

∇2T (x, y) + P∂xT (x, y) = 0, P = vd

κ
, (1)

where the dimensionless velocityP is called the Péclet number. The boundary conditions are
summarized in Figure 1. The heat flux across the crack surfacex < 0, y = 0 is given by
Newton’s law of cooling,

∂yT = B T, B = hd

λc
, (2)

whereB is called the Biot number. The parameters entering the definition ofB are the heat-
transfer coefficienth between the solid material and the coolant inside the crack and the heat
conductivityλc of the solid. Symmetry requires that no heat flux occurs onx > 0, y = 0 and
on the liney = 1. The asymptotic behavior ofT is such thatT → 0 asx →−∞ andT → 1
asx →∞. In summary, the problem reads

∇2T (x, y) + P∂xT (x, y) = 0, −∞ < x <∞, 0< y < 1, (3)

∂yT = B T, −∞ < x < 0, y = 0, (4)

∂yT = 0, 0< x <∞, y = 0, and −∞ < x <∞, y = 1, (5)

lim
x→−∞T (x, y) = 0, lim

x→+∞T (x, y) = 1, 06 y 6 1. (6)

For the solution, the Fourier transformt (k, y) of T (x, y) is needed. We use the definitions

t (k, y) = 1

2π

∫ ∞
−∞

exp(−ikx)T (x, y)dx, (7)

T (x, y) =
∫ ∞−iε

−∞−iε
exp(ikx)t (k, y)dk. (8)
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Convergence of (7) requires that the imaginary partIm(k) of the complex variablek is less
than zero. Accordingly, the integration contour for the inverse transform (8) must be located
below the real axis for convergence, which is indicated by the purely imaginary offset−iε in
the integration limits. In the following, we shall still write−∞ and∞ as integration limits
also in such cases, but we will remark on the appropriate integration contour. Note that we use
capital letters for the function in real space and small letters for its Fourier transform.

Upon inserting expression (8) into (1) we obtain(
d2

dy2
− k2+ ikP

)
t (k, y) = 0. (9)

The solution of this linear, second order, constant coefficient ordinary differential equation is
of the formt = exp(λy) with the characteristic equation

λ2− k2+ ikP = 0. (10)

The roots are±λ with

λ =
√
k2− ikP , (11)

where the square root maps positive reals to positive reals. The branch cut is made along the
upper imaginary axis from 0 to iP . The solutiont (k, y) takes the form

t (k, y) = A(k)exp(λy)+ Z(k)exp(−λy). (12)

The boundary condition onT aty = 1 requires that(∂t (k, y)/∂y)|y=1 = 0, hence

t (k, y) = 2A(k)exp(λ) cosh(λ(1− y)). (13)

We are now in a position to formulate the Wiener–Hopf equation. To this end we define
two functionsU(x) andV (x), which are derived from the boundary conditions on the crack
line. They are given by

U(x) = T (x,0) − 1

B
∂yT (x, y)|y=0, (14)

V (x) = ∂yT (x, y)|y=0. (15)

The functionU(x) is zero forx < 0, andV (x) is zero forx > 0. The Fourier transforms of
these functions read

u(k) = t (k,0)− 1

B
∂yt (k, y)|y=0, (16)

v(k) = ∂yt (k, y)|y=0. (17)

Inserting (13) on the right-hand sides in the above equations and eliminatingA(k), we have

u(k) = f (k)v(k), (18)

f (k) = −cosh(λ)+ λ sinh(λ)/B

λ sinh(λ)
. (19)
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Equation (18) is the Wiener–Hopf equation with the kernelf (k). We seek a non-trivial so-
lution of this homogeneous equation, which gives the correct asymptotic behavior of the
temperature.

3. Solution of the Wiener–Hopf equation

Because of the properties of the Fourier transform,u and v are analytic in those parts of
the complex plane where their defining Fourier integrals converge [10, p. 23]. Assuming that
T (x, y = 0) and∂yT (x, y = 0) are bounded functions ofx, the integral foru(k)will converge
for Im(k) < 0. It is also reasonable to expect that∂yT (x, y = 0) decays exponentially to zero
asx → −∞, i.e. we may substitute an expression exp(βx) (β > 0) for ∂yT (x, y = 0) in
the equation forv(k). The Fourier integral forv(k) will then converge forIm(k) > −β. The
functionsu and v should both be analytic in a strip−β < Im(k) < 0, whereβ > 0 is
so far unknown. If a decomposition off (k) in the formf (k) = f+(k)f−(k) can be found,
wheref+(k) is analytic and nonzero forIm(k) > −β andf−(k) is analytic and nonzero for
Im(k) < 0, we may write

u(k)

f−(k)
= q(k) = v(k)f+(k). (20)

The left-hand side and right-hand side in (20) are identical and analytic on the strip−β <
Im(k) < 0. Therefore, they represent an uniquely defined analytic functionq(k). The function
q(k) is entire, since the left hand side of (20) representsq for Im(k) > −β and the right-hand
side representsq for Im(k) < 0. It has to be chosen such that the desired behavior ofu(k)

andv(k) is obtained.
The crucial step in the solution consists in decomposing the Wiener–Hopf kernelf (k). It

can be accomplished by inspection when infinite-product representations of the numerator and
denominator are known. We shall derive these representations as follows. First, we write down
the product representations withλ as independent variable. In the second step,λ is replaced
by its actual representation as function ofk.

Infinite-product representations of numerator and denominator are given by the infinite
product theorem [10, p. 40]. The individual factors of the product contain the roots of cosh(λ)+
λ sinh(λ)/B andλ sinh(λ), respectively. We note that these roots are purely imaginary. More-
over, if λ is a root, its complex conjugateλ∗ = −λ will also be a root. For the numerator,
all roots are simple. We denote byλn = iyn the roots of cosh(λ) + λ sinh(λ)/B with the
imaginary partyn in the interval((n − 1)π, (n − 1

2)π), wheren = 1,2, . . . runs through the
positive integers.

Using the infinite product theorem, we have

cosh(λ)+ λ sinh(λ)/B =
∞∏
n=1

(
y2
n + λ2

y2
n

)
. (21)

For the denominator, there are simple roots at±inπ (n positive integer) and a double zero at
λ = 0. It follows that

λ sinh(λ) = λ2
∞∏
n=1

(
n2π2+ λ2

n2π2

)
. (22)
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We shall now replaceλ2 by k(k − iP) in both Equation (21) and (22). The numerator
n2π2 + k2 − ikP can be written in the form(k − k(1)n )(k − k(2)n ), wherek(1)n andk(2)n are the
solutions of

n2π2+ k2− ikP = 0. (23)

The same applies fory2
n + k2− ikP . Here we write

(k − k̃(1)n )(k − k̃(2)n ) = y2
n + k2− ikP, (24)

wherek̃(1/2)n are the roots ofy2
n + k2− ikP = 0. The explicit expressions are

k(1/2)n = iP

2
± i

√
P 2

4
+ n2π2, k̃(1/2)n = iP

2
± i

√
P 2

4
+ y2

n. (25)

We further note thatk(1)n k
(2)
n = n2π2 and k̃(1)n k̃

(2)
n = y2

n. With these definitions, the Equa-
tions (21) and (22) take the form

λ(k) sinh(λ(k)) = k(k − iP)
∞∏
n=1

[(
1− k

k
(1)
n

)(
1− k

k
(2)
n

)]
, (26)

cosh(λ(k))+ λ(k) sinh(λ(k))/B =
∞∏
n=1

[(
1− k

k̃
(1)
n

)(
1− k

k̃
(2)
n

)]
. (27)

Notice that all of the rootsk(1)n and k̃(1)n lie in the upper complex plane,i.e. their imaginary
part is positive. Similarly, all of the rootsk(2)n andk̃(2)n lie in the lower half plane. Based on this
observation we decomposef as follows

f−(k) = − 1

k(k − iP)

∞∏
n=1

1− k/k̃(1)n
1− k/k(1)n

, (28)

f+(k) =
∞∏
n=1

1− k/k̃(2)n
1− k/k(2)n

. (29)

The functionf−(k) is nonzero and analytic forIm(k) < 0, andf+(k) is nonzero and analytic
for Im(k) > −β, whereβ is given by the modulus of the imaginary part ofk̃(2)1 .

The unknown functionu(k) is determined byu(k) = q(k)f−(k). The functionq(k) must
be equal to a constant in order to satisfy the boundary conditions. This can be seen from the
asymptotic expressions (A15, A17) forf− as|k| → ∞ given in the Appendix. The introduc-
tion of higher terms in the Taylor expansion ofq(k) would cause an asymptotic behavior of
u incompatible with a bounded temperature. We will demonstrate this implicitly in the next
section, where the heat flux in the vicinity of the crack tip and of the temperature profile along
y = 0 are computed.

The value of the constantq can be obtained by considering the limitk → 0. The function
U(x) is bounded and satisfiesU → 1 asx →∞. It is zero forx < 0. We denote by2(x) the
step function taking the values 0 and 1 forx < 0 andx > 0, respectively. The functionU −2
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is then integrable on the entire real axis, and the Fourier transform ofU −2 is a continuous
function of the real variablek. The singularity ofu(k) atk = 0 thus coincides with that of the
Fourier transform of2(x), which is−i/2πk. Using (28), we find that

q = lim
k→0

u(k)

f−(k)
= −i/2πk

−i/kP
= P/2π. (30)

In summary, the functionsu(k) andv(k) are given by

u(k) = Pf−(k)/2π, v(k) = P/2πf+(k). (31)

The Fourier transform of the temperature reads

t (k, y) = t (k,0)cosh[(1− y)λ(k)]
cosh(λ(k))

, (32)

t (k,0) = u(k)+ v(k)/B. (33)

4. Temperature and heat-flux distribution

In this section we shall determine the behavior of the heat flux about the crack tip as well as the
global temperature distribution. This will justify the choice of the constant functionq = P/2π
used in the Wiener–Hopf procedure and clarify the nature of the crack tip singularity. To this
end we need to know the asymptotic behavior of the functionsf+ andf− as|k| → ∞, which
is derived in the Appendix.

4.1. HEAT FLUX NEAR THE CRACK TIP

The dimensionless heat flux∂yT (x, y) in y-direction is given by the Fourier integral

∂yT (x, y) =
∫ ∞
−∞

exp(ikx)∂yt (k, y)dk, (34)

where

∂yt (k, y) = − P2π
1

f+(k)
e−λ(1−y) − eλ(1−y)

eλ − e−λ
(35)

for y > 0. We wish to determine the singular behavior of∂yT near the crack tip. To this end
we write

∂yT (x, y) =
∫ −K
−∞

eikx∂yt (k, y)dk

+
∫ K

−K
eikx∂yt (k, y)dk +

∫ ∞
K

eikx∂yt (k, y)dk, (36)

and assume thatK > 0 is sufficiently large so that we can substitute asymptotic approxi-
mations for the integrands∂yt (k, y) in the first and third term of the right-hand side. These
approximations are valid in the limitk → −∞ andk → +∞, respectively. The second inte-
gral in (36) clearly gives a continuous function ofx because∂yt (k, y) is a bounded function
of k and will therefore be ignored.
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For 06 y 6 1 we have the asymptotic relation

e−λ(1−y) − eλ(1−y)

eλ − e−λ
∼ −e−|k|y (37)

for k → ±∞. The relations (A20, A21) forf+(k) as k → ±∞ are given at the end of
the Appendix. Multiplying these expressions with the right-hand side of (37), we obtain the
asymptotic expressions for∂yt (k, y) to be used in Equation (36). We consider infinite Biot
number first. Equation (36) then becomes

∂yT (x, y) ∼ P

2Eπ
√
π

(∫ −K
−∞

eikx+ky−iπ/4

√−k dk +
∫ ∞
K

eikx−ky+iπ/4

√
k

dk

)
. (38)

We can take the limitK → 0 in (38) because this only results in an additional finite contribu-
tion for anyx, y and thus does not modify the singular behavior.

Using the relation∫ ∞
0

e−ax√
x

dx =
√
π

a
, Re(a) > 0, (39)

we then find

∂yT (x, y) ∼ P

πE

1√
r

sin(ϕ/2), (40)

wherex + iy = r exp(iϕ). The constantE is defined in Equation (A10) in the Appendix. The
asymptotic expression for the dimensionless heat flux on the crack is

∂yT (x,0)|x<0 ∼
P

πE
√−x . (41)

For finiteB we again replace the integrands in Equation (36) by their asymptotic approxima-
tions, but we now use (A21) instead of (A20). We find

∂yT (x, y) ∼ − PB

2π2E

(∫ −K
−∞

eikx+ky

ik
dk +

∫ ∞
K

eikx−ky

ik
dk

)
, (42)

whereE is now defined by Equation (A12). The additional contribution incurred by taking
the limitK → 0 in (42) reads

− PB

2π2E

(∫ K

0

2 sin(kx)

k
e−kydk

)
, (43)

which becomes zero asx → 0. It will therefore not modify the singularity at the crack tip. We
then differentiate the right hand side of (42) with respect to the variabley and takeK → 0.
Evaluation of the resulting expressions is straightforward, giving

∂yyT (x, y) ∼ PB

π2E

x

x2 + y2
. (44)

The integration with respect toy can be performed analytically. We obtain

∂yT (x, y) ∼ PB

πE

ϕ

π
(45)
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Figure 2. Integration contours for the Fourier transform ofW(x) for x < 0 (a) andx > 0 (b) for the case of
infinite Biot number.

up to a function ofx only. This function must be zero since∂yT (x, y)
∣∣
y=0 = 0 for positivex.

The heat flux on the crack line near the crack tip reads

∂yT (x,0)|x<0 ∼
PB

πE
. (46)

4.2. TEMPERATURE DISTRIBUTION

The numerical computation of the temperature distribution can be divided into two separate
steps. First, we compute the temperature distributionT (x,0) on the crack line. When this
function is known, the temperature in the entire domain can be obtained from a convolution
integral involvingT (x,0) and a kernel depending only onx, y and the Péclet numberP , cf.
Equation (32, 33).

The temperatureT (x,0) can be expressed in terms ofU(x) andV (x) as

T (x,0) = U(x)+ V (x)/B. (47)

It simplifies toT (x,0) = U(x) for B → ∞. The functionsU(x) andV (x) must be ob-
tained from their Fourier transformsu(k) andv(k). The numerical evaluation of the Fourier
transforms requires a cutoff in the evaluation of the infinite products representingu andv as
well as a cutoff in the range for the contour integration. The divergent parts cannot be treated
numerically. We subtract certain approximations off ofu(k) andv(k) so that the remainders
are decaying faster than 1/k at infinity and are bounded atk = 0. This approach ensures that
the truncated infinite product is sufficiently converged because it has to reproduce the proper
asymptotics also for large|k|.

In the case of infinite Biot number the following functionw(k) approximatesu(k) near
k = 0 as well as for|k| → ∞

w(k) = − P eiπ/4

2πEk
√
k − iδ

, δ = (P/E)2. (48)
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Figure 3. Temperature profiles along the crack liney = 0. Figures (a)(B = 1) and (b)(B infinite) show profiles
for fixed Biot number and different Ṕeclet numbers. In (c), the Péclet number is fixed toP = 1.

The Fourier transform

W(x) =
∫ ∞
−∞

exp(ikx)w(k)dk (49)

can be evaluated using Jordan’s lemma and the residue theorem. The integration path must
lie in the strip,i.e. below the real axis, but arbitrarily close to it. Forx < 0, we can close the
integration contour by a semi-circle of radiusR→∞ in the lower half plane,cf. Figure 2(a).
The integral is zero by the residue theorem.

In the casex > 0, the semi-circle of radiusR→∞ must reside in the upper half plane as
shown in Figure 2(b). The circle does not cross the branch cut from iδ to∞. The contributions
of the circular arcsC1 andC2 vanish asR→∞, but a contribution comes from the integration
along the branch cut and from the residue atk = 0. We takek − iδ = ξ exp(iπ/2) on01 and
k − iδ = ξ exp(−i3π/2) on 02 (ξ > 0). This gives

√
k − iδ = √ξ exp(iπ/4) on 01 and√

k − iδ = √ξ exp(−i3π/4) on02. With these definitions, it follows that∫
01∪02

exp(ikx)w(k)dk = P

Eπ

∫ ∞
0

exp(−xξ − xδ)
(δ + ξ)√ξ dξ. (50)

This integral can be evaluated exactly using computer algebra software [15]. The final
result forW(x) reads

W(x) =
{

0: x < 0,

erf(
√
xδ): x > 0.

(51)

Here erf(z) denotes the error function defined by

erf(z) = 2√
π

∫ z

0
exp(−t2)dt. (52)

In the case of finite Biot number we can take composite approximations

f+ ∼ 1− Eπ ik

B
, f− ∼ 1

iP

(
1

k
− 1

k + iε

)
+ 1

iEπ

1

k + iε
, (53)

which correctly reflect the behavior neark = 0 and for large|k|. The parameterε is assumed to
be an arbitrary positive number. The Fourier transforms of the corresponding approximations
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Figure 4. Isotherms for different sets of parameters. The Biot number is infinite in (a) and (b) with Péclet numbers
P = 1 (a) andP = 5 (b); (c) shows the caseB = P = 1.

to u and v are easily evaluated by Jordan’s lemma and the residue theorem. The Fourier
transforms of the remainders can be computed numerically.

Figures 3(a–c) show numerically computed temperature profiles ony = 0 for various
values ofP andB. The profile results from the interplay of two physical effects. IncreasingP

causes higher temperatures in between the cracks as more heat must be removed per unit time
when the motion is faster. This causes higher temperatures near the crack tip and a slower
decay along the crack since the heat flux is proportional to the temperature difference. The
temperature profiles forB = 1 and different values ofP of Figure 3(a) illustrate this effect.
The slower decay along the crack is less pronounced whenB increases, and it eventually
disappears for infiniteB. Figure 3(b) shows temperature profiles for this case. For fixedP ,
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increasingB leads to a higher heat flux and therefore to lower temperatures. In particular,
the temperature drop in the vicinity of the crack tip becomes steeper since more heat can be
transferred per unit area of the crack surface. This is obvious from Figure 3(c).

We have also computed the solution in the entire domain. Figures 4(a–c) show isotherms
in the vicinity of the crack tip for finite and infiniteB. For infiniteB, the crack line itself
corresponds to the zero isotherm. By contrast, for finiteB, isotherms end in the crack line.
The persistence of high temperatures in between the cracks for large values ofP is obvious
from Figure 4(b).

All computations reported in this section were performed using 104 terms in the truncated
infinite products and a cutoff wavenumber of 50π. The numerical computation of the Fourier
transforms was carried out using the discrete Fast Fourier transform [14, Chapter 12] with
4096 data points. The computations typically require less than five minutes on a Pentium
class PC.

5. Summary and conclusions

We have computed the temperature distribution in a two-dimensional array of parallel cracks
moving with constant velocity by the Wiener–Hopf method. The heat transfer from the ini-
tially isothermal material to the crack is modeled by Newton’s law of cooling. The dimension-
less parameters of the problem are the Péclet numberP and the Biot numberB. The former
parameter measures the strength of convective heat transport. The Biot numberB describes
the ratio of the heat flux across the crack interface to the typical heat flux in the bulk.

The Wiener–Hopf integral equation is derived using Jones’s method [10, pp. 52–58]. Al-
though the equation is homogeneous, a non-trivial solution is obtained because of the in-
homogeneous boundary conditions on the temperature at infinity. The factorization of the
Wiener–Hopf kernel into two analytic functions can be performed by means of infinite product
representations. We have determined the asymptotic behavior of the factors analytically as
well as the heat flux distribution in the vicinity of the crack tip.

The computation of the full temperature distribution cannot be done analytically. The
numerical solution can be divided into two steps. The first step comprises the computation
of the temperature profile along the crack line. After that, the temperature distribution in the
entire domain can be obtained from a convolution integral involving the crack line temperature
profile.

In the limit of infinite Biot number the heat flux density at the crack tip diverges. This
case corresponds to prescribed zero temperature on the crack surface. For finite Biot number,
heat flux density experiences a finite jump when the crack tip is crossed along the crack line.
Higher Péclet numbers allow for higher temperatures between the cracks since convection
becomes more important. Higher Biot numbers increase the heat transfer across the crack
surface, which reduces the temperature.

The next step in a complete treatment of the problem would consist in the solution of
the mechanical problem for the stress and displacement fields. The Wiener–Hopf method is
applicable in principle also to this problem, but it seems hardly possible to make progress
without resorting to extensive numerical computations as it will require the factorization of
expressions involving the temperature field, which is given only in terms of an infinite product.
A purely numerical treatment of the full problem of the stationary motion of an array of



An array of moving cracks acting as heat sinks301

parallel cracks driven by thermal cooling has been undertaken by the authors using finite
elements [9].

Appendix. Asymptotic behavior of f±(k) for large |k|

Here we determine the asymptotic behavior fork→∞ of

∞∏
n=1

1− k/k̃n
1− k/kn where

kn = an+ b +O(1/n),
k̃n = an+ b + c +O(1/n), as n→∞. (A1)

Of interest are eventually only the particular casesc/a = −1
2 andc/a = −1 corresponding

to infinite and finite Biot number, respectively. In order to obtain convergent expressions for
numerator and denominator in Equation (A1) we write

∞∏
n=1

1− k/k̃n
1− k/kn =

∏∞
n=1(1− k/k̃n)ek/an∏∞
n=1(1− k/kn)ek/an

. (A2)

We can now make use of the asymptotic representation

∞∏
n=1

(1− k/αn)ek/an ∼ eγ k/a
0(β/a + 1)

0(−k/a + β/a + 1)

∞∏
n=1

an+ β
αn

, (A3)

given in [10, p. 128], whereαn = an + β + O(1/n), β arbitrary. The symbols0(x) andγ
denote the Gamma function and Euler’s constant(0·5772. . .). We then have

∞∏
n=1

1− k/k̃n
1− k/kn ∼

0(b/a + c/a + 1)0(−k/a + b/a + 1)

0(b/a + 1)0(−k/a + b/a + c/a + 1)
×
∞∏
n=1

an + b + c
an+ b

kn

k̃n
,

which may be simplified further using

0(a + b)
0(a)

∼ ab as a→∞, |arga| < π, (A4)

which is readily derived from Stirling’s formula [16]. We find

∞∏
n=1

1− k/k̃n
1− k/kn ∼

1

E

(
−k
a

)−c/a
. (A5)

The constant 1/Ecollects the factors which are independent ofk

1

E
= 0(b/a + c/a + 1)

0(b/a + 1)

∞∏
n=1

an+ b + c
an + b

kn

k̃n
. (A6)

We will now simplify E for the special cases of interest.

Casec/a = −1
2

Consider the following relation [10, p. 41]

∞∏
n=1

(
1− α

an+ β
)

eα/an = eγ α/a
0(β/a + 1)

0(−α/a + β/a + 1)
(A7)
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for the two casesα = c, β = b + c andα = −c, β = 0. Upon multiplication we find

0(b/a + c/a + 1)

0(b/a + 1)
= 0(c/a + 1)

∞∏
n=1

(an+ c)(an+ b)
an(an+ b + c) , (A8)

where0(1) = 1 has been used. Inserting this result into Equation (A6) for 1/Eand observing
that0(c/a + 1) = 0(1

2) =
√
π we obtain

1

E
= √π

∞∏
n=1

n− 1
2

n

kn

k̃n
. (A9)

Casec/a = −1
We extract the first factor(an+b−a)/(an+b) (with n = 1) from the product in Equation (A6)
and use0(x + 1) = x0(x). This gives

1

E
= 1

1+ b/a
∞∏
n=2

an+ b − a
an+ b

kn−1

k̃n−1

. (A10)

After replacingn→ n+ 1 we write 1/E in the form

1

E
= 1

1+ b/a
∞∏
n=1

n+ b/a
n+ 1+ b/a

n+ 1

n

∞∏
n=1

n

n+ 1

kn

k̃n
. (A11)

The first infinite product is again expressible by Gamma functions. Using (A8) forc = a, we
find

1

E
=
∞∏
n=1

n

n+ 1

kn

k̃n
. (A12)

Now we determine the asymptotic expressions for

f−(k) = − 1

k(k − iP)

∞∏
n=1

1− k/k̃ (1)
n

1− k/k (1)
n

. (A13)

For infinite Biot number we have

k̃ (1)n = i(nπ + P/2− π/2)+O(1/n), k (1)n = i(nπ + P/2)+O(1/n). (A14)

Thusa = iπ , b = iP/2, c = −iπ/2, c/a = −1
2, and with (A5) it follows that

f−(k) ∼ 1

E
√
π

(
1

ik

)3/2

where
1

E
= √π

∞∏
n=1

n− 1
2

n

k
(1)
n

k̃
(1)
n

. (A15)

For finite Biot number we have

k̃ (1)n = i(nπ + P/2− π)+O(1/n), k (1)n = i(nπ + P/2)+O(1/n), (A16)

thusa = iπ , b = iP/2, c = −iπ , c/a = −1. This gives

f−(k) ∼ 1

Eπ

1

ik
where

1

E
=
∞∏
n=1

n

n+ 1

k
(1)
n

k̃
(1)
n

. (A17)
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For the asymptotic behavior off+(k) we use the definition

f−(k)f+(k) = −coshλ+ λ sinhλ/B

λ sinhλ
(A18)

and determine the asymptotic behavior of the kernel on the right-hand side. We must again
distinguish finite and infiniteB. For infiniteB

f+(k) ∼ − 1

kf−(k)
∼ −iE

√
π
√

ik. (A19)

To get the right sign of the root for real values ofk we observe thatf ∗+(−k) = f+(k). This is
a consequence of∂yT (x, y) being a real function. We find

f+(k) ∼
{ √

πE e−iπ/4
√
k, k→+∞,√

πE eiπ/4
√−k, k→−∞. (A20)

For finiteB the kernel on the right-hand side of (A18) approaches 1/B, hence

f+(k) ∼ −πE
B

ik. (A21)
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